Modeling and inference for an ordinal effect size measure.

نویسندگان

  • Euijung Ryu
  • Alan Agresti
چکیده

An ordinal measure of effect size is a simple and useful way to describe the difference between two ordered categorical distributions. This measure summarizes the probability that an outcome from one distribution falls above an outcome from the other, adjusted for ties. We develop and compare confidence interval methods for the measure. Simulation studies show that with independent multinomial samples, confidence intervals based on inverting the score test and a pseudo-score-type test perform well. This score method also seems to work well with fully-ranked data, but for dependent samples a simple Wald interval on the logit scale can be better with small samples. We also explore how the ordinal effect size measure relates to an effect measure commonly used for normal distributions, and we consider a logit model for describing how it depends on explanatory variables. The methods are illustrated for a study comparing treatments for shoulder-tip pain.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling Paired Ordinal Response Data

 About 25 years ago, McCullagh proposed a method for modeling univariate ordinal responses. After publishing this paper, other statisticians gradually extended his method, such that we are now able to use more complicated but efficient methods to analyze correlated multivariate ordinal data, and model the relationship between these responses and host of covariates. In this paper, we aim to...

متن کامل

Comparison of Ordinal Response Modeling Methods like Decision Trees, Ordinal Forest and L1 Penalized Continuation Ratio Regression in High Dimensional Data

Background: Response variables in most medical and health-related research have an ordinal nature. Conventional modeling methods assume predictor variables to be independent, and consider a large number of samples (n) compared to the number of covariates (p). Therefore, it is not possible to use conventional models for high dimensional genetic data in which p > n. The present study compared th...

متن کامل

A Novel Method for Detection of Epilepsy in Short and Noisy EEG Signals Using Ordinal Pattern Analysis

Introduction: In this paper, a novel complexity measure is proposed to detect dynamical changes in nonlinear systems using ordinal pattern analysis of time series data taken from the system. Epilepsy is considered as a dynamical change in nonlinear and complex brain system. The ability of the proposed measure for characterizing the normal and epileptic EEG signals when the signal is short or is...

متن کامل

New phase II control chart for monitoring ordinal contingency table based processes

In some statistical process monitoring applications, quality of a process or product is described by more than one ordinal factors called ordinal multivariate process. To show the relationship between these factors, an ordinal contingency table is used and modeled with ordinal log-linear model. In this paper, a new control charts based on ordinal-normal statistic is developed to monitor the ord...

متن کامل

A Prioritization Model for HSE Risk Assessment Using Combined Failure Mode, Effect Analysis, and Fuzzy Inference System: A Case Study in Iranian Construction Industry

The unavailability of sufficient data and uncertainty in modeling, some techniques, and decision-making processes play a significant role in many engineering and management problems.  Attain to sure solutions for a problem under accurate consideration is essential.  In this paper, an application of fuzzy inference system for modeling the indeterminacy involved in the problem of HSE risk assessm...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Statistics in medicine

دوره 27 10  شماره 

صفحات  -

تاریخ انتشار 2008